Skip to content

This selection helper selects the variables for which a function returns TRUE.

Usage

where(fn)

Arguments

fn

A function that returns TRUE or FALSE (technically, a predicate function). Can also be a purrr-like formula.

Examples

Selection helpers can be used in functions like dplyr::select() or tidyr::pivot_longer(). Let's first attach the tidyverse:

library(tidyverse)

# For better printing
iris <- as_tibble(iris)

where() takes a function and returns all variables for which the function returns TRUE:

is.factor(iris[[4]])
#> [1] FALSE

is.factor(iris[[5]])
#> [1] TRUE

iris %>% select(where(is.factor))
#> # A tibble: 150 x 1
#>   Species
#>   <fct>
#> 1 setosa
#> 2 setosa
#> 3 setosa
#> 4 setosa
#> # i 146 more rows

is.numeric(iris[[4]])
#> [1] TRUE

is.numeric(iris[[5]])
#> [1] FALSE

iris %>% select(where(is.numeric))
#> # A tibble: 150 x 4
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width
#>          <dbl>       <dbl>        <dbl>       <dbl>
#> 1          5.1         3.5          1.4         0.2
#> 2          4.9         3            1.4         0.2
#> 3          4.7         3.2          1.3         0.2
#> 4          4.6         3.1          1.5         0.2
#> # i 146 more rows

The formula shorthand

You can use purrr-like formulas as a shortcut for creating a function on the spot. These expressions are equivalent:

iris %>% select(where(is.numeric))
#> # A tibble: 150 x 4
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width
#>          <dbl>       <dbl>        <dbl>       <dbl>
#> 1          5.1         3.5          1.4         0.2
#> 2          4.9         3            1.4         0.2
#> 3          4.7         3.2          1.3         0.2
#> 4          4.6         3.1          1.5         0.2
#> # i 146 more rows

iris %>% select(where(function(x) is.numeric(x)))
#> # A tibble: 150 x 4
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width
#>          <dbl>       <dbl>        <dbl>       <dbl>
#> 1          5.1         3.5          1.4         0.2
#> 2          4.9         3            1.4         0.2
#> 3          4.7         3.2          1.3         0.2
#> 4          4.6         3.1          1.5         0.2
#> # i 146 more rows

iris %>% select(where(~ is.numeric(.x)))
#> # A tibble: 150 x 4
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width
#>          <dbl>       <dbl>        <dbl>       <dbl>
#> 1          5.1         3.5          1.4         0.2
#> 2          4.9         3            1.4         0.2
#> 3          4.7         3.2          1.3         0.2
#> 4          4.6         3.1          1.5         0.2
#> # i 146 more rows

The shorthand is useful for adding logic inline. Here we select all numeric variables whose mean is greater than 3.5:

iris %>% select(where(~ is.numeric(.x) && mean(.x) > 3.5))
#> # A tibble: 150 x 2
#>   Sepal.Length Petal.Length
#>          <dbl>        <dbl>
#> 1          5.1          1.4
#> 2          4.9          1.4
#> 3          4.7          1.3
#> 4          4.6          1.5
#> # i 146 more rows